

OUTLINE

- Semantics of Resource Assessment
 - Resources
 - Reserves
 - Generation Capacity
- Rankings of Projects
- An Example: CEC-PIER Assessment
 - Methodology
 - Data Needed
 - Probabilistic Approach

SEMANTICS

Resource

- Thermal energy in the ground
- Subset is shallow enough to be accessible
- Further subset is concentrated enough to be useful

Reserve

- Portion of useful, accessible resource that is economic
- Also used (somewhat loosely) to describe thermal energy that could become economic for development
- Caveats: productivity, market, and development cost
- Generation Capacity (Electrical Energy)

RANKINGS

- Maturity
- Generation Capacity (MW)
- Cost

PROJECT MATURITY

 Challenge is to objectively assess and compare resources at different stages of development

RANKING BY MATURITY

Exploration – Development Categories:

- Existing power plant is operating
- No operating plant, but at least 1 well with tested capacity of 1 MW or more
- No well tested at 1 MW or more, but downhole temperature of at least 212°F
- Not meeting A, B, or C: resource properties from other sources (geology, geochemistry, geophysics)

RANKING BY MW

CEC-PIER Assessment (2004): Generation Capacities of Major Geothermal Resource Areas in California and Nevada (Gross MW)

GeothermEx, Inc. 2005

GENERATION CAPACITIES

Area	Minimum	apacity Most-likely (Gross MW)	Capacity In Use (Gross MW)	Incrementa Minimum (Gross MW)	al Capacity Most-likely (Gross MW)	Incremental As % of	Most-likely Incremental As % of Grand Total
California							
Imperial ∀alley	1,900	2,500	550	1,350	1,950	65%	45%
The Geysers	1,200	1,400	850	350	550	18%	13%
Medicine Lake	150	200	0	150	200	7%	5%
Other	<u>450</u>	600	300	<u>150</u>	300	10%	<u>7%</u>
California Total	3,700	4,700	1,700	2,000	3,000	100%	70%
Nevada							
Greater Reno	550	800	150	400	650	50%	15%
Dixie Corridor	350	550	50	300	500	38%	12%
Other	100	<u>150</u>	0	100	<u>150</u>	12%	<u>3%</u>
Nevada Total	1,000	1,500	200	800	1,300	100%	30%
Grand Total	<u>4,700</u>	<u>6,200</u>	<u>1,900</u> Values rounded t	2,800 to increments of 50	<u>4,300</u> MW	-	<u>100%</u>

METHODOLOGY TO ESTIMATE GENERATION CAPACITY

- Reservoir properties
 - Average temperature
 - Depth to top
 - Thickness
 - Area
 - Porosity
- Other factors
 - Recovery factor (0.05 to 0.20)
 - Heat capacity of rock (39 BTU/ft³ °F)
 - Utilization factor (45%)
 - Capacity factor (90%)
 - Plant life (30 years)

PROBABILISTIC APPROACH

SUMMARY OF INPUT PARAMETERS

Variable Parameters

Reservoir Area (sq. mi.) Reservoir Thickness (ft) Rock Porosity

Reservoir Temperature (*F) Recovery Factor

Minimum	Most Likely	Maximum
1.7	3.4	5.1
2500	3500	4500
0.03		0.07
340		380
0.05		0.20

Fixed Parameters

Rock Volumetric Heat Capacity Rejection Temperature Unligation Factor Plant Capacity Factor Power Plant Life

39.0	BTU/cu. ft*F
50	*F
0.45	1
0.90	1
30	years

RESULTS

Statistics							
	мw	MW/sq. mi.	Recovery Efficiency				
Mean	62.40	18.39	1.23%				
Std. Deviation	26.82	6.84	0.43%				
Minimum (90% prob.)	30.14	9.43	0.64%				
Most-likely (Modal)	46.95	12.90	0.83%				

Figure FIS00-2: Probabilistic Calculation of Geothermal Energy Reserves FISH LAKE VALLEY, NEVADA

METHODOLOGY TO ESTIMATE CAPITAL COSTS

- Exploration
 - Up to drilling first full-diameter well
- Confirmation
 - Drilling until 25% of specified capacity is available at the wellhead
- Development
 - Drilling until 105% of specified capacity is available at the wellhead
 - Surface equipment at \$1,500 / kW
 - Transmission-line interconnection

Exploration – Confirmation Costs

- Geology (field mapping)
- Geochemistry
- Geophysics
 - Gravity
 - Magnetics
 - Resistivity (e.g., TDEM, AMT, CSAMT)
- Intermediate-depth slim holes
- Full-sized confirmation wells (including testing)
 - Success rate 60% for confirmation wells
- Regulatory compliance
- Administration
- Resource assessment report

DRILLING COSTS

Development Costs

- Production and injection wells
 - Ratio of injectors to producers depends on technology used (e.g., flash or binary)
 - Success rate 80% for development wells
 - MW per well based on statistical correlation of MW vs. reservoir temperature
- Surface facilities on site: \$1,500 / kW
 - Applied for all plant technologies (flash or binary)
- Transmission tie-in estimated in conjunction with separate analysis by another contractor for CEC-PIER Project

CAPITAL COSTS

- Costs in CEC-PIER Study as of December 2003
- Overall Average (64 projects): \$3,100 / kW
 - Reflects all development costs (including transmission)
 - \$2,950 / kW within California
 - \$3,400 / kW in Greater Reno and Dixie Corridor
- Incremental geothermal capacity available:
 - 2,500 MW (gross) below average cost of \$3,100 / kW
 - 2,000 MW (gross) within California below state average of \$2,950 / kW
 - 1,700 MW (gross) below \$2,400 / kW (assumed threshold to be competitive with other renewables)

PIER GEOTHERMAL DATABASE

How to Get a Copy

- Full report and PIER Geothermal Database are available for free download at:
 - www.geothermex.com
 - On the Home Page, click on CEC-PIER Reports
 - Report is 264 pages (4.2 MB)
 - PIER Geothermal Database is 45.1 MB (zipped)

SUMMARY

- Geothermal resource assessment is a chicken-andegg problem
 - Have to define a sufficiently large target to guide public policy (including transmission) and attract investment
 - At same time, have to avoid over-selling potential, to maintain credibility
- Probabilistic approach to assessing generation capacity allows some appreciation of both the risks and the potential rewards
- Ranking projects by costs (both initial capital and levelized life-cycle costs) shows where to focus development effort in near term